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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1923

STb-DY OF A GUIDANCE SCHEME USING

APPROXIMATE SOLI_IONS OF TRAJECTORY EQUATIONS TO CONTROL

THE AERODYNAMIC SKIP FLIGHT OF A _RY VEHICLE

By Robert S. Dunning

SUMMARY

Approximate closed-form solutions to the reentry equations are developed by

assuming that the difference between the centrifugal and gravitational accelera-

tions is negligible. The approximate solutions are valid in the exit-velocity

range between approximately 23,000 and 26,000 feet per second. A numerical com-

parison is made between the approximate and exact solutions for six typical tra-

jectories. The results indicate good agreement with complete convergence occur-

ring at the skipout condition within a reasonable flight corridor. Approximate

explicit equations governing coasting flight after a skip maneuver are also devel-

oped and compared with the exact solutions. A guidance scheme employing these

equations is described and results are presented from a two-dimensional digital-

computer simulation of this scheme. Emphasis is placed on simplicity and speed

of computation. The results indicate satisfactory control to exit from the atmos-

phere over ranges from approximately 70 ° to 200 ° _)out the center of the earth.

INTRODUCTION

Although direct reentry into the atmosphere is planned for vehicles returning

from space missions, a "skip" type of reentry may be useful as a means of

extending range or as an emergency procedure if suitable guidance can be provided.

In a skip maneuver the vehicle enters the atmosphere at a low flight-path angle

and then, through the control of aerodynamic and centrifugal forces, is made to

skip out. After a period of coasting flight, the vehicle reenters. Such a maneu-

ver has the advantages that the heat input to the vehicle may be reduced in rela-

tion to the range covered and that such a maneuver may be more compatible To the

heat-protection system of the vehicle.

The total angular range covered is composed of three portions: a portion

within the atmosphere from reentry to exit, a coasting portion outside of the

atmosphere, and a portion from final reentry to landing. Of the three parts, the

first and third will in most cases contribute less to the total range than the

coast portion; but the conditions that exist at the exit from the first part

essentially determine the range that one may reach. The first problem in the use



of a skip maneuver is, then, to select the total range required and to establish
exit conditions from the atmosphere which will insure that this range is achieved.
That is, from amongthe numerouspossible velocitymflight-path-angle combinations
one must select a single combination which will achieve the desired range. At the
sametime, this combination must be such that it is not only physically possible
for the vehicle to be guided to it during the atmospheric portion of the maneuver,
but this combination must also allow for the limitation that the speed cannot be
materially controlled by aerodynamic drag once the initial reentry has been ini-
tiated. Moreover, once a proper combination of exit velocity and flight-path
angle has been selected, it is necessary to guide the vehicle to achieve these
conditions very accurately, inasmuch as relatively small errors at exit can have
a pronounced effect on range.

In addition to the foregoing requirements, it is also desirable that any
practical skip-control guidance system be simple and be capable of controlling the
vehicle rapidly and accurately in response to present-time information about
velocity and flight-path angle.

In this report somepreliminary results are presented of an analytic study
which has been madewith a view of providing just such control. It must be empha-
sized that this is a fine-adjustment schemeto be utilized within an already rea-
sonable flight corridor. The guidance equations for the first atmospheric portion
are developed, then the coasting portion is considered in order to determine
desirable exit conditions; and, finally, somepreliminary results of a simulation
combining the two portions are discussed. No attempt is madeto cover the second
entry portion of the maneuverbecause this is a normal reentry and hence is
already adequately covered in other literature. (See refs. 1 and 2.) For the
sake of simplicity, the whole study has been kept two dimensional.

CONSTANTSANDSYMBOLS

Coordinates employed in describing the motions of the reentry vehicle are
given in figure 1. Any consistent set of units maybe used. In this report it
is assumedthat:

ge = 32.17 feet per second per second

r e = 3,960 international statute miles

Vci r = 25,750 feet per second

= 1/24,000 per foot

De = 0.003 slug per cubic foot

i international statute mile = 5,280 feet = 1.609344 kilometers
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Figure i.- Coordinates employed in describing motions of reentry vehicle.
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a

b

C D

CL

D

g

ge

h

ha

%

K 1

K 2

L

L/D

m

q

r

r e

rb

constants defined by equations (23), (24), and (2_)

constants defined by equations (40), (41), and (42)

K2

constant defined as cos Yb _ Yb

K2
constant defined as --

drag coefficient

lift coefficient

drag force

gravitational acceleration

earth gravitational constant

radial height above surface of earth

maximum (apogee) altitude attained by vehicle

minimum (perigee) altitude attained by vehicle

constant defined as

constant defined as

lift force

lift-drag ratio

mass of vehicle

dynamic pressure

CDPeS

2m

CLPeS

2m

radial distance of entry vehicle from center of earth,

radius of earth

exitj or breakout, distance from center of earth

distance traveled

r e +h
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Vcir

Vb
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Y

Y
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F

Y

_b

c(v)

0

0

Sub script s :

a

b

surface area of' entry vehicle

time

velocity

circular satellite velocity

exit, or breakout, velocity

weight of entry vehicle

horizontal velocity component at exit, or breakout, Vb cos Yb

function of a, b, and y defined by equation (15)

function of altitude, e-_h

function of y defined in equation (l_b)

vertical velocity component at exit, Vb sin Yb

angle of attack.

decay constant of atmosphere

function defined by equations (20)

flight-path angle

exit, or breakout, flight-path angle

function of velocity, g_IVA- l)cos r
V 2 \gr

range measured in angle about center of earth during skip portion of

maneuver

range measured in angle about center of earth during coast portion of

maneuve r

density of atmosphere

apogee or highest trajectory point

breakout, or exit, conditions
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C

e

max

approximate solutions

conditions existing at surface of earth

maximum

Bars over symbols denote special conditions indicated in text.

Dots over symbols denote derivatives with respect to time.

ATMOSPKERIC REENTRY PORTION

In order to provide the requisite degree of accuracy and, at the same time,

to maintain as simple an operational procedure as possible, the equations of

motion will be solved in a simple two-dimensional form. This approach is attrac-

tive both from the computational standpoint because solutions based on present

conditions must be provided quickly, and from the operational standpoint because

the equations can then be incorporated into a small memory unit attached to a

general-purpose computer and need not be read into the computer at all unless

actually needed.

Inasmuch as the coast phase will be entirely determined by the velocity and

flight-path angle which exist when the vehicle exits from the atmosphere, the pri-

mary purpose in solving these equations is to provide a means of guiding the vehi-

cle to a certain previously supplied exit velocity and flight-path angle. A

method of supplying exit velocity and flight-path angle will be considered later

in this report as a part of the coasting phase. However, as far as the atmos-

pheric reentry portion is concerned (i.e., that portion which constitutes the

first part of this report) the breakout or exit conditions will be taken as exter-

nally supplied.

Equations and Assumptions

The basic nonlinear equations of motion for atmospheric reentry are:

mV = -D - W sin y

wC -, r
= V sin y

r8 =V cos y

(1)

For simplification of these equations, the following substitutions and assumptions

are made:
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-ph
p = pe e

where Pe and p are constants;

D = Phv2
m Kle -

where K1 =
CDPeS

2m
= Constant ;

L _hv2
-- = K2e-
m

where K 2 -
CLPeS

2m
- Constant; and

V_\grg/V2 1) 6(V) 0
cos =

From the last assumption it is seen that whenever the velocity is equal to satel-

lite velocity, that is, V = g_, or when y = 90 ° , the term _(V) is identically

zero. Hence, these closed-form solutions to the reentry equations are developed

by assuming that the difference between the centrifugal and gravitational acceler-

ations is negligible. The term e(V) will be carried, however, until this

assumption can be justified.

For simplicity, the following change of the variable h to the variable y
is made. Let

y = e-_h (2)

so that

_r_ igh (2a)
Y

With the foregoing assumptions and the change of variables given by equations (2)

and (2a), the equations of motion (1) become:

= -KIYV 2 - g sin y

= K2yV + V_(V)

= -pyV sin r

r8 =V cos r

(3)
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Eliminate the independent variable, time, in favor of the variable

tions (3) then become:

y. Equa-

dV V KIV- - + ___ (4)
dy § _ sin r _yV

dr _ @ _ K2 _(V)

dy # _ sin r _y sin r

(_)

and

d_ & ctn y (6)

_y y _ry

These, then, are the equations to be integrated for V, r, and 8 as functions

of the variable y, which in turn is expressible in terms of the altitude h. It

should be noted that no assumption has been made as to the magnitude of y; that

is, no assumption of a small flight-path angle has been made.

Variation of Flight-PathAngle T

In order that the flight-path angle r be evaluated, the following steps are

taken. With the use of the subscript b to denote the exit or breakout condi-

tion, the integral of equation (5) becomes:

rb - K2 /y yb dy - --i/y yb c(v)dysin T dT _ _ Y

If, during the interval of evaluation, e(V) has a very weak variation with y,

then

K 2 Yb c(V) in
-cos r = --_ Y - Y

y _ y

or

K2 c(V) in y (7)cosr:cosrb+%-(Y-Yb)+ 7b

In terms of h, equation (7) becomes:
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cos y = cos Yb + -_h - e - hb (8)

Since, for the appropriate values of _h and _hb

and K 2 >> e(V), it can be seen that the third term on the right-hand side of

equation (8) is negligible compared to the second term on the right-hand side and

is henceforth neglected.

Variation of the Velocity V

For the purpose of evaluating velocity V as a function of

is written in the fom

where

and

Equation (9) may be rewritten:

cos y = a + by

K2

a = cos Yb _ Yb

b - K2

sin y = _1 - (a + by) 2

sin y =$(1 - a2) - 2aby - b2y 2

y, equation (7)

(9)

(lO)

(lZ)

(z2)

(Z2a)

or

Equation (4) then becomes
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l- + dy
v _ r v y/

and the integral of this equation with the proper limits yields

14Y (KI- -- + dy (13)
V _ sin y V y/

Again, it may be seen from numerical calculations that the second term on the

rlght-hand side of equation (13) will contribute very little to the solution

K1
>> g by several orders of magnitude. Furthermore, the small

be'cause sin T V-_

variations in g and V with y throughout the interval of integration will

have even less influence on the solution and will therefore be neglected.

Treating g and V in the second term of the right-hand side of equation (4) as

constant average values (denoted by _ and V) and replacing sin y with the

identity of equation (12a) alters equation (13) to

V _ K 1 _/'Yb d__yy+ _ In Y--- (14)

in Vb _ dy _ 692 Yb

where

_ = (1 - a2) - 2aby - b2y 2 (15)

By the use of integral tables and several trigometric identities, the integral of

the first term on the right-hand side of equation (14) may be put into the form

f dy _ -I sin_l( a + bzh

From equations (ll) and (9),

f _dy _ _+K_22fBsln_l(-c+__y)

lO



Depending on the choice of signs for the second te_ of the right-hand side of the

dy
preceding equation, the integral of _ may become

_Y

(16a)

or

(16b)

In either case, the same answer results when the limits of equation (14) are

applied, and when the values of equations (16) are substituted into equation (14),

namely,

v : _+ +i
in Vbb 2 _2 Yb

Clearing logarithms and replacing y with

- the following explicit expression for V:

i yields
e-_ h and KI/K 2 with (L/D)

V= Vb e I-_ (r-Yb) - _2 (h-hb)_ (17)

Again it should be noted that equation (17) is valid only in an interval in

which the second term of the exponent is always small compared to the first term.

This second term should be considered an approximate second-order correction to

the first term by virtue of its derivation. It also follows that inasmuch as Vb

must always be less than V (because of atmospheric drag) the first term of the

exponent must always be a positive quantity. Finally, because a value of _/_2

must be assigned in equation (14), it should suffice to use gb and Vb if one

is solving for V and to use the present-state values of g and V if one is

solving for Vb.

Variation of Range i_

Integration of equation (6) for range yields the following equations:

Gb 1 7y Yb ctn y dyde = - _r Y

ll



_8 8b i _i- (a +by) dyde = _-_ Ii - (a + by) 2 y

and

eb y Y

- a fyb dY b fyb dY

At this point, three cases must be considered. First, if a2 = l, then

% - e --a(_]y= b + _ sin-l_-cos

_r \aby/y b _r K 2 \' --_i Y

+ 1
%-e =-K- iy

sin Yb_

_b- 8 = +- K2_e _h sln y- e _hb sin yb) + 6_(y- Yb)
(18a)

In most practical cases a2 is very nearly unity, therefore equation (18a) will

usually suffice. However, the following possibilities are included for the sake

of completeness.

Second, if a2 < i, then

8b-e =+ a in

_r 1__-_-_a2 Y Y
_l-a Yb

12



_r Y

I+ in ab

_b -@=-+

where z(y) = 1 - a2 - aby + _ _ a2 sin y.

And third, if a2 > i, then

(zSb)

eb -_ =_+ a 1 in_ 1 -aby + 1 - a2 1+_ __ _ -%_ - _(_- _)
Yb

_b -_=-+

_b- @ =-+ a _in-iI_(1- a c°s Y)]- sin-iI_(l- a c°s _b)]l 1 y _
_ra/_ i +K2Y ' +- +__ _( _)

(z8c)

In a more compact form_ equations (18a), (18b), and (18c) may be expressed as

13



(19)

where the negative sign on the term in brackets is the proper choice in all cases,

and where, for the first case when a2 = i,

P(Y'h) = +-_2 (e_hsin Y - e_hbsin Yb)
(20a)

for the second case when a2 < 13

+ a

F(y,h) = - a2 (hb - h) + in - a2 abe _hb _ a2 sin (20b)
- i - a2 - abe -ph + _i a2 sin

and, finally, for a2 > I_

1 a2_1L F_e _bb _1- sin-lLK-__l- a_" ( cos Yb

(2oc)

In equations (20b) and (20c), the negative sign in the term on the right is proper

for all cases run in positive time, and the positive sign is proper for cases run

in negative time.

Numerical Examples

Using the exact equations of motion given by equations (i), a set of six

trajectories were run on a digital computer. This computation was done in order

to obtain exact trajectories with which the approximate equations could be com-

pared. A summary of the trajectory characteristics is shown in table I. The

breakout conditions for these cases were taken from an actual simulation which

will be discussed later in the report. These trajectories were run in negative

time from the final condition and thus represent the last few seconds just before

skipout.

The computational procedure used in solving the approximate equations is as
follows:

(i) For each of the six cases, the breakout conditions Vb, Yb, and hb

are specified. The altitude is supplied at all times from the exact solutions;

thus# the altitude becomes the independent variable for these particular test

case s.

14



TABLE I.- CHARACTERISTICS OF THE SIX TEST TRAJECTORIES FOR FIRST ATMOSPHERIC PORTION

Trajectory

I

II

III

IV

V

VI

Weight,

W,
ib

7,000

Surface

area,

S,

sq ft

6O

Lif_-_F°r exact trajectory -

drag |Initial Initial Initial

i v
/' _ deg ft/sec ft

0]_ I 5.5 35,000 300,00C

Breakout

flight-path

angle, Yb'

deg

2.620

2.942

3.Z30

3.245

3.350

3.420

Breakout

velocity,

Vb,

ft/deg

24,200

24,850

24,95O

2_,290

25,290

25,600

Breakout

altitude,

%,
ft

300,000

(2) Equation (9) is solved to give the corresponding approximate computed

values of y:

Yc = c°s-l( a + be-_h)

(3) The values of y from step (2) are used, along with the corresponding

values of h from which they were obtained, in the solution of equation (17) for

the approximate values of V.

v
(4) Step (2) also allows the computation of @. By equation (19)

where, in the particular test cases which were studied, @b is arbitrarily set

at zero.

The results of numerical calculations are shown in figures 2, 3, 4, and 5.

Figure 2 shows some general features of the six test trajectories. The test

results for flight-path angle are presented in figure 3, the results for velocity

are presented in figure 4, and the results for range are presented in figure 5.

In these three figures altitude is the independent variable.

Based on the numerical calculations which are shown in figures 3, 4, and 5,

the following conclusions are drawn.

First, with the possible exception of flight-path angle, the results indicate

good agreement between the exact numerical solutions of the equations of motion

and the approximate analytical solutions. The dependent variable in a guidance

15



scheme would be the lift-drag ratio of

the vehicle. This ratio is, of course,

governed by equation (17) in which

flight-path angle may be supplied as a

measured quantity if necessary.

Second, by specifying a desired

set of conditions at breakout, one can

obtain complete convergence of the

approximate and exact solutions. As a

consequence, these equations should be

especially suitable for guiding a vehi-

cle during the final critical stages of

the skipout maneuver.

Guidance Implications

Thus far, it has been show_l that

the equations which have been developed

will actually describe the motions of a

._ Exact

.... Approximate

• T-r- r -r-,- -,--.-F-.-Z- T- T-_ _

't ---Z .......

• , I _ I _ I i I _ I , I 4 I I I

2. _ i I ± J l L I l l 1 _

_ 3"_f
5.o J I _ 1 _ 1 L _ I _ L_.__ x__ I

[ i ;

_ _ - _- -

3. I [

-32 -28 -2 -20 -16 -L2 -8 -4 0

T£me, t, sec

Figure 3.- Comparison of flight-path angles

as obtained from exact and approximate

solutions to equations of motion for

final 30 seconds before breakout.

_2 x lO"

_oI f

| _

_ _ 'Prajeetory i,ath an_zle,

a 2&

-- V V ;._a'2_
.... _,5"

t -- VI _.q;

22 [ 1 l l 1 I l 1 [ ] ' L _L_

Time, t, s÷,c

Figure 2.- Altitude plotted against time

for six test trajectories during final

30 seconds before breakout.

- F_act

.... Approxlmst e

2&,_i I [ I [ I I , _1 L__±_--L_

{

25,20J I I I I i [ I I , J _ 1 _ ] ,

-_2 -28 -24 --_ .16 -12 --8 _ 0

Tim_, t, sec

Figure 4.- Comparison of velocities as

obtained from exact and approximate solu-

tions to equations of motion for final

30 seconds before breakout.
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0 ..............

Apprgxi_te

oF

<,L

.i!

?
-L--

.}? -28 -2_ -20 -i_ -L? ., -_ 0

T_, t, 6e_

Figure 5.- Comparison of angular distance

traveled about center of earlh during

final 30 seconds before breakout for

the six test trajectories.

space vehicle within the flight regime

under consideration. Given the valid-

ity of the equations, however, it is

a relatively simple matter to apply
them in such a manner as to control a

vehicle to achieve desired exit condi-

tions. It is to be assumed that the

reentry vehicle will be equipped with

an inertial guidance system or with

equivalent hardware. Such a system,

if alined just prior to reentry, would

be able to supply information such as

present altitude, velocity, and pos-

sibly flight-path angle. If informa-

tion were available concerning these

same par_neters at breakout, the

dependent variable in equation (17) is

the lift-drag ratio of the vehicle.

Consequently, adjustments of the real

llft-drag ratio in accordance with

this equation will cause convergence

to the desired breakout condition.

The problem which remains, then, is

to dete_nine the correct breakout con-

ditions, a problem which is best solved

from orbital or ballistic considera-

tions before entry. It is, of course,

implicit in this assumption that the

range to be attempted be known in

advance.

COAST PHASE

A given angular range in the coast portion of a skip maneuver csn theoreti-

cally be obtained with an infinite number of combinations of exit velocity and

flight-path angle. One manner of obtaining uniqueness is to specify a maximum,

or apogee, altitude after the skip along with the desired angular range. In such

a case, however, these variables must lie within the relatively small range of

angles and velocities that can be achieved in the reentry without exceeding either

the deceleration limit or the angle-of-attack limit of the vehicle. There exists

a requirement, therefore, ti_t the apogee altitude be judiciously chosen in order

to insure that the unique exit conditions will fall within the range of values

which can acLually be realized. The problem then becomes one of computing a cor-

responding exit velocity and flight-path angle once a desired range and skip alti-

tude are decided upon.

Explicit equations already exist which may be used to specify range for a

given exit, flight-path angle, and velocity; explicit equations also exist which

may be used to specify apogee altitude for a given exit, flight-path angle, and

17



velocity. However, there are no explicit solutions for the reverse of this proc-

ess, namely, velocity or flight-path angle in terms of range and apogee attitude.

This is due to the transcendental nature of some of the trigonometric terms

involved. In using the independent variables of range and apogee altitude to con-

trol skip, therefore, one has two choices. Either an iterative solution may be

employed, which is essentially the same as a graphical solution, or approximate

expressions may be developed which are accurate enough to suit the need. For

space vehicles, probes, and so forth in flight_ the latter choice is the more

attractive because the computing time may be made very short and the number of

computer components required may be reduced. The following set of approximate

equations is developed to fill this need.

Exact Equations for Coast Range

A starting point for developing approximate equations for exit velocity and

flight-path angle as functions of apogee altitude and range are the exact equa-

tions in which velocity and flight-path angle are the independent variables. The

equation for range, as derived from equation (93) on page 63 of reference 3 is:

[ i sin 2Tb I

e = 2 tan-i I- 2____. __ I (21)

IfVcir_ 2 2 /

where the subscript b denotes conditions existing at exit from the atmosphere

and Vci r is circular satellite velocity at 300,000 feet. The equation for max-

imum altitude is (see appendix)

where

g
-B + _B 2 - 4AC

ha = - re (22)
2A

A =Vb 2 2gere2
rb (23)

B = 2gere 2 (24)

and

c -- (25)

18



Values of Vb and Yb which satisfy both equations (21) and (22) simulta-

neously are the values which give a particular ma_:imum altitude for a particular

range.

Approximate Equations for Coast Range

By use of the following substitution, equation (21) may be put into a form

which is much easier to manipulate. Let

:v b cos Yb (26)

and

= Vb sin Yb (27)

Then, beginning with equation (21),

8 = 2 tan-l_-v_ir-_- (--_bcos _b)-_ 2 tan-lkvcir2 - x

which can be put into the form

(28)

the x term of which is

(_ _)x Vcir "_
_2 + ctn - _ = 0

8 IVcir2 (2 _)2=-_ ctn -- -+ + ctn2
(29)

The second term under the radical sign is numerically of magnitude much smaller

than Vcir2_ and hence may be neglected. After this second term is dropped_ equa-

tion (29) becomes

e
= Vci r - _ ctn _i (30)

Equation (30) is appr)ximately equivalent to equation (28) under almost all

conditions likely to be encountered in practice, and the approximation becomes

invalid only near e = 0° and O = 360 ° • Whereas it was not possible to solve

equations (21) and (22) e_p!icitly, it is possible to solve equations (30)

and (22).

19



Rewriting equation (23) gives

A = _2 + _2 2gere 2

rb

Solving for _2 yields

_2 = A - _2 +

But, from equation (22),

2gere 2

rb

(31)

(32)

2Ar a + B) 2 = B2 - 4AC

where ra = h a + ra is the highest or apogee radius. Now_

A(Ara 2 + Br a + C) = 0

therefore_

so that

A __

B C

ra ra2
(33)

• 2gere 2
z2 = B C _2 +

ra ra 2 rb

Inasmuch as equations (2_) and (26) can be combined to form

(34)

"2rb2C = -x (35)

equation (35) may be substituted in equation (34) so that

•2 B rb2_2z - + _2 + 2gere 2

ra ra2 rb

_2 B + _2 +

ra rb
(36)

2O



But, from equation (26) ,

2 _ ctn @+ _2 (_)_2 = Vcir - Vci r _ _- ctn2 (37)

Again, dropping the small last term on the right-hand side of equation (37) which
is negligible in relation to Vcir 2, and then substituting equation (37) into
equation (36) yields

_2 B + cir 2 " (38).... Vcir z ctn + 2gere2
r b

\

r a

After collection of terms, equation (38) becomes

_2 + _ Vci r ctn _ + B _ Vcir 2
\ra2 rb

= o (39)

Defining

A' = 1 (_o)

r(_rb2B' = Vci r --
a2 l) ctn £2

(41)

and

C f -- B f rb2 l_Vcir 2 2gere2 (42)

ra \ra2 / rb

then

;. = -B' +-_(B') 2 - 4A'C' (43)
2A'

Because a negative _ will not permit skipout, the positive sign on the radical

is selected.

It follows immediately once _. is known that x can be calculated from

equation (30). Hence, from equations (26) and (27)
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and

 vb/

Comparison of Approximate Solutions With Exact Solutions

Solutions to these equations were computed both for the exact equations (15)

and (19) and also for the approximate equations in order to compare the results

of the two methods. Figure 6 is an exact solution to equations (18) and (19)

where the dashed lines are lines of constant apogee and the solid lines are lines

of constant range. The corresponding approximate solutions are shown in figure 7,

to the same scale, for a number of ranges and apogee altitudes.

Figure 8 shows the same information as figure 6; however, in this case, Vb

and Yb are broken up into x and _. The peculiar, fan-like structure of this

curve converging toward Vci r is of interest. In all of the cases shown here,

the reference altitude is taken at 300_000 feet. For higher altitudes, the fan

tends to be closed somewhat towards the 180 ° line. Figure 9 gives the same infor-

mation for the approximate equations as does figure 8 for the exact. Figure i0

is a comparison of the approximate-range equation (26) with the exact-range equa-

tion in order to give an idea of the discrepancy between the two. It can be seen

that no significant loss in accuracy results from the use of the approximate

equations.

Inasmuch as atmospheric drag may be neglected above the breakout altitude of

300#000 feet for all practical purposes_ the foregoing set of equations

(eqs. (30), (43), (44), and (45)) may be used to predict exit conditions for the

atmospheric portion of the maneuver. Moreover_ due to their explicit nature, they

will be able to do this more quickly than would be the case with more exact
solutions.

GUIDANCE S_ AND SIMULATION

The two sets of approximate equations which have been developed may now be

combined to form a single guidance scheme. Such a guidance scheme would be some-

what as follows.

A range to be sought is decided upon before or during the early skip phase

of the maneuver. This range must_ of course_ lie within the set of ranges which

are physically realizable.

A unique combination of breakout velocity and flight-path angle which will

achieve this range is determined from the strictly orbital considerations of the

coast phase. Factors which govern the selection of this combination, for

instance, are the maximum or minimum allowable altitude after the first skip.

22



27,ooo[/__ 3_ °

i_ --- _ML _ _2_oo_ _oo

25,ooo k \ _ "\ _-2oo

\ \

\ \ o o

\
22,000 \

2 _, 000

20,0C0

]9,000

\

F_,n_uant apogee \ _ \

_d t i rude \, _ \

-- [_unstant range \

a_out earth \

\ \

\&_ \ \
\ \ [00

J I , J- _ I I I L d I I h I \ A I

2 3 _ 5 b 7 8

Fllght-path angle, 1_i_ deg

\

\190

Figure 6.- Exit velocity plotted against flight-

path angle showing lines of constant r_ge and

apogee altitude for exact com_mtation.

21,00[

i

19,00{,L. _ ---_- [

'] i 2

2v,000,

_d/ 520 ° 2.@_o
_- Z _ -- -- " - -- - _ 240 °

__:- .-'--L-L /z_° -- -_oo

I ",'0-4-. .
g 2, ooct \ -_." - _-_

"_ \ - " 250

2_,OOC. \ , \ 200

'" \ " ,,o o \

o \ \
\ \

> 2:', 00( \ \ "_

20 o

::onsta_t apogee \\
\

_it it ude

Ponstant range \ t '__

about earth \ \ \

\ \ ,00

_\_ I iN'N, '
5 4 r: t: 7

Flight-path a_g]e, _b' ,le_

Figure 7.- Approximate solutions showing lines of

constant range and apogee altitude.

23



, bOO

80 o

i2O o

20,000 21,000 22,000 29,000 24,000 25,000 96,000 97,000

Velocity component, x, ft/see

Figure 8.- Vertical and horizontal compo-

nents of exit velocity showing lines of

constant range and apogee.

_,000

50 °

Figure 9.- Approximate solutions showing

vertical and horizontal components cf

exit velocity with lines of constant

range and apogee.

At some time during the skip, probably just as the vehicle starts to climb

out, a control computer begins solving the approximate equations. This computer

will receive inputs from an inertial guidance system detailing present velocity,

flight-path angle, and altitude. This information is then used along with the

desired final flight-path angle and velocity in equation (14) to select the proper

lift-drag ratio. The procedure is repeated continuously, all terms becoming

increasingly accurate until breakout is reached, at which time the desired final

conditions should be achieved. The vehicle then follows the usual Keplerian orbit

until the second reentry.

The skip-control scheme which is outlined here was programed on a digital

computer in order to check its validity. Some of the preliminary results of this

simulation scheme are listed in table II. A block diagram of the simulation is

given in figure ii. The results shown in the table are for a vehicle which has

the lift-drag characteristics of figure 12, and which weighs 7,000 pounds and has

a surface area of 60 square feet. A limit to the angle of attack corresponding to

a lift-drag ratio of 0._ was incorporated. Entry was at 35,000 feet per second

with initial flight-path angles of -5 ° , -5.5 ° , and -6° at 300,000 feet, although

other entry conditions have been studied. The atmosphere used in this simulation

is the ARDC Model Atmosphere, 1959 (ref. 4). The proper apogee altitude after
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the skip for each desired range was

selected empirically because a good ana-

lytic selection technique is not pres-

ently available. Under present circum-

stances, this would have to be read into

the guidance from tables. Interpolation

here is practical since great accuracy

is not required. The results indicate

agreement between the desired and

achieved exit velocities to within

approximately 4 feet per second, and,

in most cases where the desired velocity

has been achieved, the desired flight-

path angle has also been achieved to

within one-tenth of a degree. Selected

time histories from this simulation are

shown in figures 13, 14, and 15. In

this simulation, guidance was initiated
at minimum altitude and continued until

breakout. Thus, the guidance mode was

in operation during roughly the final

60 seconds before breakout. Ranges

Figure i0.-Comparison of range obtained by approxi- between roughly 70° and 200 ° about the

mate and exact equatf ons. center of the earth are easily achieved
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Figure ii.- Block diagram of simulation.
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TABLE II.- TYPICAL SIMULATION RESULTS

Entry

angle,

deg

-5

-5.5,

-6

De sired

range,

@,

deg

101.50

132.82
158.52
179.68
197.22

45.o2

71.48
94.41

114.48

132.14

147.70

33.32

53.94
72.70

90.00
105.90
120.52

Apogee,

ha,
ft

656,000

820,000

984,ooo
1,148,000

1,312,000

492,000

656,ooo
820,000

984,000

1,148,000

1,312,000

492,000

656,000

820,000

984,000

1,148,000

1,312,000

Desired exit

velocity,

%,
ft/sec

25,407

25,564
25,676
25,764
25,843

24,423
24,892
25,151

25,328

25,463

25,571

23,304

24,138

24,584

24,879

25,092

25,263

Exit

velocity,

%,
ft/sec

25,407

25,%8
25,676

25,768
25,843

24,426

24,895

25,151

25,328

25,463

25,574

23,304
24,141

24,587

24,879

25,095

25,263

Desired exit

flight-path

angle, Yb,

deg

1.96

2.05
2. ii

2.16

2.20

2.63

2.94

3.12

3.25

3.35

3.43

3.67

4.04

4.22

4.34

4.41

4.47

Exit flight-

path angle,

%,
deg

1.92

2.04
2.11

2.16

2.21

2.31

2.8o
3.04

3.21

3.32

3.42

2-97

3.69

4.01

4.19

4.32

4.40

with a slight loss in accuracy in flight-path

angle when shorter ranges are attempted. Actu-

ally this loss of accuracy does not represent

any significant loss in range capability inasmuch

as the sensitivity of range to flight-path angle

is also less in this region. Longer ranges were

not attempted because the higher apogee alti-
tudes involved were not deemed desirable.

CONCLUSIONS

As a result of the foregoing studies of the

initial reentry and coast portions of a skip

maneuver, the following general conclusions may
be drawn:

i. The approximate guidance equations for

the atmospheric portion of the skip show promise

of providing suitable guidance for a vehicle

during the critical final 60 seconds or so

before breakout from the atmosphere to some

1.6

i. _ CD

0 9 i0 15 20 25 _0

Angle of attack, _, deg

Figure 12.- Aerodynamic character-

istics of vehicle.
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previously specified breakout velocity

and flight-path angle. The principal

reason for this fact is attributed to

the convergent nature of the equations

as the vehicle approaches breakout alti-

tude which insures that breakout condi-

tions will be achieved precisely and

accurately.

2. T_ equations governing the

atmospheric portion display the desir-

able property of simplicity and, hence,

require a minimum of computer storage

space. A_ a result, they may be stored

in a separate memory core and need not

be read into the guidance computer at

all unless actually needed.

3. As a result of the explicit

nature of these equations, they may be

solved rapidly on a digital computer and

may thus be used to govern the control

inputs of the vehicle based on vehicle

conditions at the time of computation.

4. E_it conditions in terms of

velocity and flight-path angle may be

specified uniquely by a desired range

and some corresponding maximum altitude

after the skipout. When the exit con-

ditions are taken to exist at some spec-
ified reference altitude above the dis-

cernible atmosphere_ these exit condi-

tions are suitable for specifying the

breakout conditions for the atmospheric

portion of the skip.

_. No significant loss in accuracy

occurs when the approximate equations

are used in preference to the exact

equations for specifying breakout condi-

tions in terms of range and apogee alti-

tude, whereas, by this means, a simpli-

fication may be achieved in the compu-

tational procedure which results in a

corresponding reduction in the computer

requirements.

6. The preliminary results of a

digital-computer simulation of the

guidance scheme suggested in this paper
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indicate that it does work for a variety of desired ranges, achieving the desired

exit velocity within 4 feet per second and the desired exit flight-path angle

within one-tenth of a degree of those values which are specified for the coast

phase. Entries at 35,000 feet per second with flight-path angles between -5° and

-6 ° at 300,000 feet may be guided with good accuracy to ranges between 70° and

200 ° about the center of the earth.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., April 24, 1963.
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APPENDIX

DERIVATIONOFTHEEQUATIONFORMAXIMUMALTITUDE

The equation for maximumaltitude (eq. (19) of text) maybe obtained from the
conservation of momentumand energy. The following equation is given for the
conservation of momentum:

rbVb cos Yb = raVa (A_)

where the subscript a refers to apogee conditions.

solving for Va 2 yields

Inasmuch as ra =h a + re,

(A2)

From the equation for the conservation of energy,

Va 2 2gere2 - Vb 2 2gere2 (A3)

ra rb

or, transposing and substituting for ra,

2
V a

2gere2 + 2gere2 (A4)
=Vb2 rb re + ha

Equating equation (A4) to equation (A2) yields

Vb 2 2gere 2 + 2gere2 _ (rbV b cos l_o) 2

rb r e + ha (r e + ha)2

or

IVb 2g_e21(r e + ha) 2 + 2gere2(re + ha) - (rbV b cos l_b) 2 = 0 (AS)

If the following substitutions are made (eqs. (23), (24), and (25), respectively,

of the text):

2gere 2

A = Vb 2 rb
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B = 2gere 2

c ---(r_V_oo_,_)_

then

-B + _B 2 - 4AC

ha = - re
2A

It is clear that only the positive root will give physically meaningful results.
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